The economic and societal footprint of the pharmaceutical industry in Europe

Presentation by PwC UK
27 June 2019
Pharmaceutical companies have created a thriving industry that makes an economic and societal contribution to the EU

We have shown that the whole of the pharmaceutical industry across the EU in 2016 contributed to ...

€206 billion in Gross Value Added and ...

2.5 million jobs

46% of people employed directly by the industry are women

Medicines benefit millions of people on a daily basis. In just a subset of medicines within HIV (HAART) and breast cancer (HER2+, HR+) we saw that ...

Over 650,000 people in the EU were treated with these medicines between 2007 - 2017, who are estimated to have gained around ...

2 million healthy life years, leading to around ...

€27 billion in productivity gains for EU economies, and approximately ...

€13 billion in healthcare cost savings due to avoided complications

Economic and societal footprint of the pharmaceutical industry in Europe

PwC
Setting the scene
Highlighting the broader value that the industry delivers can contribute to more holistic dialogue and decision-making

- With **greater pressure on government finances**, the public debate has frequently turned on the **high prices** of new medicines.

- This debate **ignores the direct and indirect benefits** that the industry brings to both the field of medicine and the wider patient population, all whilst overlooking the wider societal impact the industry has on economies.

- To **highlight the broader value the sector delivers within the EU**, we have sought to demonstrate the economic, health and societal impact of the industry in Europe using several approaches. We consider:

 - The economic impact of the industry
 - The health and societal impact of the industry through the case studies on select therapeutic areas
 - The value pharmaceutical companies place on incentives, specifically IP incentives
Our analysis consists of three main components: economic, health & societal, and role of IP incentives.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Methodology</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td>Demonstrate the scale of the Pharmaceutical industry in the EU-28</td>
<td>PwC input-output multiplier model</td>
</tr>
<tr>
<td>Health & societal</td>
<td>Demonstrate the value of selected medicines through health and productivity gains</td>
<td>Incremental changes in health outcome, costs, and absenteeism from literature</td>
</tr>
<tr>
<td>Role of IP incentives</td>
<td>Understand the relevance and importance of IP incentives</td>
<td>Survey of EFPIA corporate members</td>
</tr>
</tbody>
</table>
Economic impact assessment
The pharmaceutical industry supports a total of 1.4% of the EU’s GDP

- The pharmaceutical industry contributed a total of €206 billion in GVA to the EU’s economy in 2016.
- The industry directly contributes 0.7% of the region’s GDP, while its total contribution is equivalent to 1.4% of the region’s GDP.
The pharmaceutical industry supported nearly 2.5 million jobs across the EU

- The pharmaceutical industry contributed nearly 2.5 million jobs to the EU in 2016, many of which are high skilled and highly productive.
- The jobs supported directly by the pharmaceutical industry account for approximately 0.2% of the region’s employment, while its total contribution is equivalent to 0.9% of the region’s employment.

Note: Figures may not equal other pages due to rounding.
Economic and societal footprint of the pharmaceutical industry in Europe
PwC
The pharmaceutical industry is highly productive, and has a higher GVA per worker than other key industries

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceuticals</td>
<td>€100bn</td>
<td>642,000</td>
<td>€156,000</td>
</tr>
<tr>
<td>Automotive manufacturing</td>
<td>€211bn</td>
<td>2,480,000</td>
<td>€85,000</td>
</tr>
<tr>
<td>Aerospace manufacturing</td>
<td>€45bn</td>
<td>410,000</td>
<td>€102,000</td>
</tr>
<tr>
<td>Computer programming</td>
<td>€261bn</td>
<td>3,180,000</td>
<td>€82,000</td>
</tr>
</tbody>
</table>

1. Eurostat do not publish a figure for 2016. We have estimated aerospace employment for 2016 using the GVA growth rate, as 2016 data is not available. Source: Eurostat, PwC analysis. Note we have selected comparator industries which are important to the economy, high value, and with a significant international presence. Our analysis suggests that the pharmaceutical industry (defined by NACE code C21) has one of the highest rates of productivity of any industry.
The pharmaceutical industry has a higher proportion of females in its workforce than many other key industries.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Share of female employees (EU average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceuticals</td>
<td>46%</td>
</tr>
<tr>
<td>Auto manufacturing</td>
<td>24%</td>
</tr>
<tr>
<td>Aerospace & Defence</td>
<td>16%</td>
</tr>
<tr>
<td>Computer programming</td>
<td>23%</td>
</tr>
</tbody>
</table>

Source: Eurostat, PwC analysis. Note for the Aerospace and & Defence industry, we have used the ‘Other transport manufacturing’ industry to calculate share of female employees due to data availability.

Economic and societal footprint of the pharmaceutical industry in Europe

PwC
Impact of the Orphan Regulation
Orphan diseases affect 30 million people in the EU and treatment options are limited or non-existent

To qualify for orphan designation in the EU, the prevalence of the condition cannot be more than 5 in 10,000.

More than half of newly diagnosed cases are in children, 1 in 3 of which will die before their 5th birthday

Fewer than 15% of orphan diseases benefit from even minimal amounts of scientific knowledge

95% of rare diseases have no approved therapies

Ronny, diagnosed with neuroendocrine tumors, a type of orphan cancer

“I did what people do in movies and asked how long I had to live. And the oncologist said: “months, years…” And I kind of switched off after that. But what he did say after that was: “But with the right treatment you could live a lot longer.”

Because I had access to the right treatment at the right time, I’m now living a reasonable quality of life and have been able to do things.”

Economic and societal impact analysis
PwC
Since the adoption of the Orphan Regulation in late 1999, the number of orphan medicines in the EU has risen steadily.

Prior to 2000, only 8 products had been authorised to treat rare diseases in the EU. Now there are over 150.

The number of medicines granted orphan designation by the European Commission has risen year on year - this suggests a greater number of higher quality applications.

The benefits have also been seen in research and development - the number of scientific publications on rare diseases has risen at a faster rate since 2000.

Existing orphan medicines treat a wide variety of indications, with many focusing on orphan cancers

- The majority of orphan designations from 2000 to 2018 were designed for conditions affecting less than 3 in 10,000 people
- Orphan cancer medicines account for over 40% of all orphan medicines

Source: European Medicines Agency
Economic and societal impact analysis
PwC
The Orphan Regulation has added benefits for SMEs not available to larger companies

- **SMEs** benefit from reduced fees for key services, including scientific advice, pre- and post-authorisation procedures, and applications for marketing authorisations.

- In 2015, protocol assistance for orphan drugs developed by SMEs represented **44%** of all protocol assistance procedures.

- More than **half** the medicines receiving orphan designation are developed by SMEs.

*SMEs are defined as enterprises with fewer than 250 employees and either an annual turnover of not more than €50 million or an annual balance-sheet total of not more than €43 million.

CRA Report ‘An evaluation of the economic and societal impact of the orphan medicine regulation’, 2017
Economic and societal impact analysis

PwC
Since the Orphan Regulation was introduced, there has been a significant rise in orphan-focused SMEs.

- One potential attraction of orphan medicines to SMEs is the opportunity to attract early investment.
- Venture capitalists investing in orphan medicine startups typically do so on average one year before they would in a non-orphan medicine equivalent (CRA, 2017).

There has been a notable increase in the number of SMEs developing orphan medicines since 2000. The 248 SMEs started since the introduction of the Orphan Regulation employ over 8,700 people.

Sources: European Medicines Agency SME Register, CRA Report: ‘An evaluation of the economic and societal impact of the orphan medicine regulation’ - 2017
Economic and societal impact analysis
Health & societal impact
The pharmaceutical industry provides major health and societal benefits to the lives of millions of Europeans

Our analysis intends to quantify and bring some of these benefits to life by focusing on two therapeutic areas. These only represent a fraction of the total benefits of medicines.

For the selected medicines, we estimated...

- Number of patients treated between 2007 - 2017 using data from IQVIA
- Healthy life years gains* using data from reimbursement submissions and academic literature
- Productivity gains in terms of GDP from reduced absenteeism as a result of improved health
- Net change in medicine and treatment costs

*‘Healthy life years’ is used as the plain English equivalent of the technical term: Quality-Adjusted Life Years (QALYs). Healthy life years, productivity and change in healthcare costs were estimated relative to a comparator standard of care.
Our selected therapeutic areas cover different disease profiles

Within the therapeutic areas, we selected a subset of medicines that represent an innovation in their field of medicine that addressed a previously unmet patient need.

<table>
<thead>
<tr>
<th>Therapeutic area</th>
<th>Breast cancer</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category of drug</td>
<td>Adjuvant HER2+ and HR+ therapies</td>
<td>Highly active antiretroviral therapy (HAART)</td>
</tr>
<tr>
<td>Specific medicines</td>
<td>• trastuzumab</td>
<td>• emtricitabine/eflpirivine/tenofovir disoproxil</td>
</tr>
<tr>
<td></td>
<td>• pertuzumab</td>
<td>• elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide (as fumarate)</td>
</tr>
<tr>
<td></td>
<td>• trastuzumab emtansine</td>
<td>• dolutegravir/abacavir/ lamivudine</td>
</tr>
<tr>
<td></td>
<td>• ribociclib</td>
<td>• efavirenz/ emtricitabine/tenofovir disoproxil (as fumarate)</td>
</tr>
<tr>
<td></td>
<td>• palbociclib</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• lapatinib</td>
<td></td>
</tr>
<tr>
<td>Standard of care comparator</td>
<td>Typically chemotherapy, tumour resection and radiotherapy (where possible)</td>
<td>Dual NRTI therapy without protease inhibitors</td>
</tr>
</tbody>
</table>
HIV
Thanks to pharmaceutical innovation, HIV has transformed from a death sentence to a treatable, chronic disease

Timeline of HIV treatment development

Early 1990s: Mainstream practice was dual therapy combining two NRTIs, AZT with zalcitabine (ddC) or didanosine (ddI).

Mid 1990s: Advent of triple therapy, later called HAART, thanks to the development of protease inhibitors, the first of which was saquinavir. Early forms of HAART later saw great improvement through the creation of PI-boosters and the development of the back-bone NRTIs.

2000s onwards: Backbone therapies made over this time period became more efficacious with fewer side effects. Major drug developments have been the ability to combine triple therapy into a single tablet (STR), as well as CCR5 and integrase inhibitors.
Thanks to pharmaceutical innovation, HIV has transformed from a death sentence to a treatable, chronic disease

Health & societal impact

The introduction of early HAART in 1996 transformed HIV from a death sentence to a treatable chronic disease.

HIV/AIDS-related deaths*

Burden of disease (in DALYs) for HIV/AIDS

*Source: Our World in Data - statistics included for Western Europe 1996 - 2017

**Source: Global Health Data Exchange - statistics included for European Union 1996 - 2017

Patrick’s story: Living with HIV evolved so quickly

Patrick Reyntiens was diagnosed as HIV-positive in 1985. At the time, the disease was close to a death sentence. The great breakthrough came in 1996, with the introduction of ‘AIDS Cocktails’ (early HAART). Initially, Patrick was on 20 - 30 pills a day. Patients felt sicker on the medication than from the virus itself. These days, Patrick takes only five pills. Many patients only have to take one. Patrick’s quality of life has improved enormously. He takes time to raise awareness of HIV. He’s hopeful treatment will continue to improve and there might even be a cure one day.

*Source: Our World in Data - statistics included for Western Europe 1996 - 2017

**Source: Global Health Data Exchange - statistics included for European Union 1996 - 2017

Economic and societal footprint of the pharmaceutical industry in Europe

PwC
The advent of HAART therapies have resulted in the gain of nearly 800,000 HLYs in Europe

105,000 HIV patients were treated between 2007-2017

775,000 HLYs gained in Europe

8% of the patient population*

Average of 7.4 HLYs per patient

*The medicines we have chosen are single tablet therapies. Many people are treated with multi tablet regimens with the same active ingredients
Thanks to an increase in working days, average productivity gains per patient were around €200,000.

Increase in productivity per patient expected to result in gains of €22 billion over 6 years of potential productivity gained per patient.

Our assessment relative to dual NRTI therapy reveals a net cost reduction over a 30 year time horizon.

Increased cost of medicines is significantly offset by reduced treatment costs.

There could be a net saving in healthcare of around €11,000 per patient.
These innovations have potential further impact in terms of inequalities in health and on HIV transmission rates

Health inequality
- HIV infection is higher in more vulnerable groups of society, particularly those from a lower socioeconomic background.
- Gains in HIV treatment could thus **disproportionately benefit a lower socioeconomic group**.

Transmission rates
- HAART could have a wider impact on HIV transmission rates in Europe through lowering virologic load to undetectable levels and through their use as post-exposure prophylaxis.
- At undetectable levels, risk of transmission can be considered negligible.
- Reduced transmission could **lower overall HIV prevalence** and therefore lessen its health burden in the European population.
Role of IP incentives
A survey of EFPIA corporate members provides insight into the importance of the European incentives model

- Research and development of new medicines can be a long, complex, risky and ultimately expensive (at around $2bn to bring a drug to market) process
- The European incentives model is designed to encourage continued innovation by providing additional protection to medicines (that make it to market) from competition
- To help understand the importance of the current incentives model, and the potential effects of dismantling it, we undertook a survey of 18 EFPIA corporate members

Incentives explored in the survey

- Supplementary Protection Certificates (SPC)
- Orphan Market Exclusivity
- Regulatory Data Protection
- Paediatric Rewards
Companies indicated incentives and quicker market access are the leading factors influencing R&D investment decisions.

Role of IP incentives

- **IP Incentives**
 - Important across the value chain, crucial in influencing R&D and Commercial investment decisions.
 - Overall Rank: 1

- **Accelerated approval / early access schemes**
 - Important factor in influencing R&D and Commercial investment decisions, less so for Manufacturing.
 - Overall Rank: 2

- **Skills and wage costs of labour**
 - Overall Rank: 3

- **Size of economy and potential for growth**
 - Overall Rank: 4

- **Macro-economic / political issues (e.g. inflation, political uncertainty)**
 - Overall Rank: 5

- **Attractiveness to conduct clinical trials**
 - Overall Rank: 6

- **Tax rates**
 - Overall Rank: 7

- **Infrastructure and transport**
 - Overall Rank: 8
Dismantling the current incentive model would have a negative impact on pharmaceutical companies’ R&D activity

Scenario

Existing IP incentives are phased out in Europe over a period of 4-5 years. Other factors remain the same, including funding for medicines and market access / reimbursement hurdles for innovative medicines.

Over half of respondents suggest this would lead to a reduction in their R&D and Commercial footprints **of over 25%**
Conclusions
Incentives are important to ensuring the pharmaceutical industry continue to deliver broader value to the EU

The current incentives model is important to ensuring continued R&D investment by the pharmaceutical industry in Europe.

Innovation has brought health benefits to patients with previously unmet needs and fostered a thriving industry that significantly contributes to European GDP and jobs.

The benefits go beyond what we have quantified: improved psychosocial health of patients and carers, contribute to the informal economy, and stimulate innovation across different medical disciplines.
Thank you