close
Diabetes doesn’t take time off, so we can’t either
We won’t rest until cell therapy can replace a lifetime of continuous insulin therapy for patients with diabetes.

Diabetes: what is the potential breakthrough?

Cell therapy involves injecting or inserting living cells into a patient to treat the cause of their disease. The new cells take over the function of the faulty cells, tackling the disease and restoring health. Established examples of cell therapy include blood transfusions and bone marrow transplants. Cell therapy in type 1 diabetes involves transplanting islet cells from a healthy donor pancreas into the patient, enabling their body to regain control of blood sugar levels.



How will it help patients?

People with type 1 diabetes have to monitor their blood sugar levels regularly and have multiple injections of insulin every day to keep the levels under control. Uncontrolled and low blood sugar can quickly cause confusion, loss of consciousness, seizures or even death. Cell therapies for type 1 diabetes are expected to provide control of blood sugar without the need to have daily insulin injections, and they may also help to delay the onset of serious long-term health conditions.

How many patients could it help?

Approximately 4 million people live in Europe with type 1 diabetes. Diagnosis of diabetes is growing at a rate of 3 to 5% every year. Around 300,000 cases are in children under the age of 18, of which the average age of diagnosis is 12 year’s old. Cell therapy brings hope through potentially restoring the normal function of the pancreas, restricting the need for insulin therapy to only the most severe cases.



“Cell therapy can help control blood sugar, replacing a lifetime of continuous insulin therapy for patients with type 1 diabetes.”



What is the potential impact on Europe’s healthcare systems?

A lack of sufficient evidence often leads to delayed access for patients and increased costs to manufacturers, which can stifle this kind of innovation. This is particularly true for innovations that have uncertainty associated with clinical trials – for example, when unknown technology is involved. Revising regulatory procedures, providing early and ongoing consultation on clinical trial design and using adaptive licensing are key ways to overcome this challenge.

What might need to change in health service delivery?

Cell therapy represents a rapidly evolving field, with a diverse range of manufacturing and treatment approaches, meaning that conventional non-clinical pharmacology and toxicology studies may not be appropriate. Both manufacturers and stakeholders would need to engage early in the process to build experience with new approaches.